

Deemed-to-be-University u/s 3 of UGC Act 1956, Government of India NAAC ACCREDITED Approved by MHRD / AICTE / PCI / BCI / COA / NCTE Nachauli, Jasana Road, Faridabad- 121002 (Haryana) Website: www.lingayasvidyapeeth.edu.in | Ph: 0129-2598200-05

COURSE PLAN & COURSE DATA SHEET

PROGRAM: Btech	DEGREE: UG
COURSE: Software Engineering	SEMESTER: VI CREDITS: 3
COURSE CODE: CS - 304	COURSE TYPE: CORE
REGULATION: NA	
COURSE AREA/DOMAIN: IT	CONTACT HOURS: 3+1 (Tutorial) hours/Week.
CORRESPONDING LAB COURSE CODE (IF ANY): NA	LAB COURSE NAME (IF ANY): NA

PROGRAM EDUCATIONAL OBJECTIVES:

- Graduates will be proficient in designing, implementing, and testing software systems using contemporary tools and practices.
- Graduates will demonstrate the ability to analyze complex problems and apply principles of computing and other relevant disciplines to identify solutions.
- Graduates will maintain and improve their skills as the computing field evolves, showing an ability to learn and adapt to new tools, technologies, and methodologies.
- Graduates will be effective team members and leaders, able to communicate and collaborate effectively in diverse teams to accomplish a common goal.
- Graduates will understand and address ethical, legal, security, and social issues and responsibilities relevant to software engineering.
- Graduates will be able to communicate effectively with a range of audiences about technical and non-technical issues.
- Graduates will demonstrate knowledge and understanding of project management principles and apply these to one's work, as either a member or leader of a team.
- Graduates will understand and apply quality assurance practices and methods in software development.
- Graduates will have the ability to design, develop, and integrate software systems within broader systems and networks.
- Lifelong Learning: Graduates will recognize the importance of lifelong learning and pursue ongoing professional development and education in their field.
- Global and Societal Impact: Graduates will understand the impact of software solutions in a global, economic, environmental, and societal context.
- Graduates will demonstrate creativity and innovation in solving software problems, and in designing software systems.

SYLLABUS:

UNIT	DETAILS	HOURS
Ι		7
	INTRODUCTION: Introduction to Software Engineering, Definition of Software Engineering, Software Components, Software Characteristics, Software Crisis, Software Engineering Processes, Similarity and Differences from Conventional Engineering Processes, Applications, Software Myths. Software Development Life Cycle Model: Water Fall Model, Prototype Model, Spiral Model, Evolutionary Development Models, Iterative Enhancement Models.	

Deemed-to-be-University u/s 3 of UGC Act 1956, Government of India NAAC ACCREDITED Approved by MHRD / AICTE / PCI / BCI / COA / NCTE Nachauli, Jasana Road, Faridabad- 121002 (Haryana) Website: www.lingayasvidyapeeth.edu.in | Ph: 0129-2598200-05

		-
Ш	SOFTWARE REQUIREMENT SPECIFICATIONS: Requirement Engineering Process: Elicitation, Analysis, Documentation, Review and Management of User Needs, Feasibility Study, Information Modeling, Data Flow Diagrams, Control Flow Model, SRS Document, IEEE Standards for SRS, Data Dictionary.	6
III	SOFTWARE DESIGN: Basic Concept of Software Design, Architectural Design, Low Level Design: Modularization, Design Structure Charts, Flow Charts, Coupling and Cohesion Measures, Design Strategies: Function Oriented Design, Top-Down and Bottom-Up Design.	5
IV	CODING & SOFTWARE TESTING & MAINTENANCE: Top-Down and Bottom –Up programming, structured programming, Code Inspection, Compliance with Design and Coding Standards. Testing Objectives, Unit Testing, Integration Testing, Acceptance Testing, Regression Testing, Top-Down and Bottom-Up Testing Strategies: Test Drivers and Test Stubs, Structural Testing (White Box Testing), Functional Testing (Black Box Testing), Alpha and Beta Testing of Products. Need for Maintenance, Categories of Maintenance: Preventive, Corrective and Perfective Maintenance, Cost of Maintenance, Software Re-Engineering, Reverse Engineering.	8
V	SOFTWARE MEASUREMENT & MATRICES: Function Point (FP) Based Measures, Cyclomatic Complexity Measures: Control Flow Graphs. Estimation of Various Parameters such as Cost, Efforts, Schedule/Duration, Constructive Cost Models (COCOMO), Resource Allocation Models, Software Risk Analysis and Management. Quality Assurance, Quality Control, Software Quality Attributes, Software Quality Assurance (SQA): Verification and Validation.	11
	TOTAL HOURS	37

Deemed-to-be-University u/s 3 of UGC Act 1956, Government of India NAAC ACCREDITED Approved by MHRD / AICTE / PCI / BCI / COA / NCTE Nachauli, Jasana Road, Faridabad- 121002 (Haryana) Website: www.lingayasvidyapeeth.edu.in | Ph: 0129-2598200-05

Teacher Centric Appro	bach			
TC1: Chalk and Talk, Blended learning	TC2: PPT,	TC3: Video Le	ctures	TC4:
Learner Centric Appro	oach:			
LC1: Assignment.	LC2: Mini project.	LC3: Quiz/Class test.	LC 4: Seminar on recen	t trends.
LC5: Group Task.	LC6: Others			

DETAILED SESSION PLAN

Lecture session/ Number	Topics to be covered	CO addressed	Teacher Centric Approach	Learner Centric Approach	References	Relevance with POs and PSOs
1	Introduction to Software	1	TC1, TC2	LC1,LC2,LC3	T1/T2/R1	2
2	Software Characteristics, Software Crisis, Software	1	TC1, TC2	LC1,LC2,LC3	T1/T2/R1	3
3	Similarity and Differences from Conventional Engineering Processes, Applications,	1	TC1, TC2	LC1,LC2,LC3	T1/T2/R1	3
4	Software Myths. Software Development Life Cycle Model	1	TC1, TC2	LC1,LC2,LC3	T1/T2/R1	2
5	Water Fall Model	1	TC1, TC2	LC1,LC2,LC3	T1/T2/R1	3
6	Prototype Model, Spiral Model	1	TC1, TC2	LC1,LC2,LC3	T1/T2/R1	3

Deemed-to-be-University u/s 3 of UGC Act 1956, Government of India NAAC ACCREDITED Approved by MHRD / AICTE / PCI / BCI / COA / NCTE Nachauli, Jasana Road, Faridabad- 121002 (Haryana) Website: www.lingayasvidyapeeth.edu.in | Ph: 0129-2598200-05

7	Evolutionary Development Models, Iterative Enhancement Models.	1	TC1, TC2	LC1,LC2,LC3	T1/T2/R1	2
8	Requirement Engineering Process	2	TC1, TC2	LC1,LC2,LC3	T1/T2/R1	3
9	Elicitation, Analysis, Documentation, Review	2	TC1, TC2	LC1,LC2,LC3	T1/T2/R1	3
10	Management of User Needs, Feasibility Study,	2	TC1, TC2	LC1,LC2,LC3	T1/T2/R1	2
11	Information Modeling, Data Flow Diagrams, Control Flow	2	TC1, TC2	LC1,LC2,LC3	T1/T2/R1	3
12	SRS Document, IEEE Standards for SRS,	2	TC1, TC2	LC3	T1/T2/R1	2
13	Data Dictionary.	2	TC1, TC2	LC1,LC2,LC3	T1/T2/R1	3
14	Basic Concept of Software Design, Architectural Design	3	TC1, TC2	LC1,LC2,LC3	T1/T2/R1	3
15	Low Level Design: Modularization, Design Structure Charts	3	TC1, TC2	LC1,LC2,LC3	T1/T2/R1	2
16	Flow Charts, Coupling and Cohesion Measures,	3	TC1, TC2	LC1,LC2,LC3	T1/T2/R1	2
17	Design Strategies: Function Oriented Design	3	TC1, TC2	LC3	R1/R2/R3	2

Deemed-to-be-University u/s 3 of UGC Act 1956, Government of India NAAC ACCREDITED Approved by MHRD / AICTE / PCI / BCI / COA / NCTE Nachauli, Jasana Road, Faridabad- 121002 (Haryana) Website: www.lingayasvidyapeeth.edu.in | Ph: 0129-2598200-05

18	Top-Down and Bottom-Up Design	3	TC1, TC2	LC1,LC2,LC3	R1/R2/R3	3
19	Top-Down and Bottom –Up programming, structured programming	4	TC1, TC2	LC1,LC2,LC3	R1/R2/R3	2
20	Code Inspection, Compliance with Design and Coding Standards.	4	TC1, TC2	LC1,LC2,LC3	R1/R2/R3	3
21	Testing Objectives, Unit Testing, Integration Testing, Acceptance Testing	4	TC1, TC2	LC1,LC2,LC3,LC4	R1/R2/R3	2
22	Regression Testing, Top-Down and Bottom-Up Testing Strategies	4	TC1, TC2	LC1,LC2,LC3	R1/R2/R3	3
23	Test Drivers and Test Stubs,	4	TC1, TC2	LC1,LC2,LC3	R1/R2/R3	2
24	Structural Testing (White Box Testing), Functional Testing (Black Box Testing),	4	TC1, TC2	LC1,LC2,LC3	R1/R2/R3	3
25	Alpha and Beta Testing of Products Need for Maintenance,	4	TC1, TC2	LC3	R1/R2/R3	2

Deemed-to-be-University u/s 3 of UGC Act 1956, Government of India NAAC ACCREDITED Approved by MHRD / AICTE / PCI / BCI / COA / NCTE Nachauli, Jasana Road, Faridabad- 121002 (Haryana) Website: www.lingayasvidyapeeth.edu.in | Ph: 0129-2598200-05

26	CategoriesofMaintenance:Preventive,CorrectiveandPerfectiveMaintenance,CostofMaintenance,SoftwareRe-Engineering,ReverseEngineering.	4	TC1, TC2	LC1,LC2,LC3	R1/R2/R3	2
27	Function Point (FP) Based Measures	5	TC1, TC2	LC1,LC2,LC3	R1/R2/R3	3
28	Function Point (FP) Based Measures	5	TC1, TC2	LC1,LC2,LC3	R1/R2/R3	3
29	Function Point (FP) Based Measures	5	TC1, TC2	LC1,LC2,LC3	R1/R2/R3	2
30	Cyclomatic Complexity Measures: Control Flow Graphs.	5	TC1, TC2	LC1,LC2,LC3,LC4	R1/R2/R3	3
31	Cyclomatic Complexity	5	TC1, TC2	LC1,LC2,LC3	R1/R2/R3	2
32	Estimation of Various Parameters such as Cost, Efforts, Schedule/Duration,	5	TC1, TC2	LC1,LC2,LC3	R1/R2/R3	2
33	Estimation of Various Parameters	5	TC1, TC2	LC1,LC2,LC3	T1/T2/R1	2
34	Constructive Cost Models (COCOMO), Resource Allocation Models,	5	TC1, TC2	LC3	T1/T2/R1	3
35	Constructive Cost Models	5	TC1, TC2	LC1,LC2,LC3	T1/T2/R1	3

Deemed-to-be-University u/s 3 of UGC Act 1956, Government of India NAAC ACCREDITED Approved by MHRD / AICTE / PCI / BCI / COA / NCTE Nachauli, Jasana Road, Faridabad- 121002 (Haryana) Website: www.lingayasvidyapeeth.edu.in | Ph: 0129-2598200-05

36	Software Risk	5	TC1, TC2	LC1,LC2,LC3	T1/T2/R1	2
	Analysis and					
	Management. ,					
	Quality Assurance,					
	Quality Control,					
	Software Quality					
37	Software Quality	5	TC1, TC2	LC1,LC2,LC3	T1/T2/R1	3
	Assurance					
	(SQA):					
	Verification and					
	Validation					
38	Quiz		TC1, TC2	LC1,LC2,LC3	T1/T2/R1	3

TEXT/REFERENCE BOOKS:

T/R	
1	Pressman Roger S., "Software Engineering – A Practitioner's Approach", 6th Edition, McGraw Hill, 2004.
2	Sommerville Ian, Pearson Education, "Software Engineering", 5th edition, Addison Wesley, 1999.
3	Aggarwal KK, Singh, Yogesh, "Software Engineering", New Age International, 2000.
4	Jalote Pankaj,"An Integrated Approach to Software Engineering", 3rd edition, Narosa, 2005

WEB SOURCE REFERENCES (W):

1	https://www.javatpoint.com/software-engineering-tutorial
2	https://www.tutorialspoint.com/software_engineering/index.htm
3	W3schools.com

COURSE PRE-REQUISITES: A robust data infrastructure for efficient storage and management of diverse datasets. Advanced analytical tools and skilled personnel are essential for extracting meaningful insights.

C.CODE	COURSE NAME	DESCRIPTION	SEM
CS -	Software Engineering	This course provides a comprehensive overview	VI
304		of software development principles,	
		methodologies, and best practices, emphasizing	
		practical skills for designing and building	
		software systems.	

COURSE OBJECTIVES:

000	
1	To enable students to understand and apply software design principles, creating efficient, scalable, and
	maintainable software solutions.
2	To familiarize students with various software development methodologies like Agile, Waterfall, and DevOps,
	ensuring adaptability to industry practices.
3	To teach techniques for software testing, quality assurance, and debugging to produce reliable and error-free
	software.
4	To equip students with skills to gather, analyze, and manage software requirements effectively, ensuring
	alignment with stakeholder needs.

5

Lingaya's Vidyapeeth

Deemed-to-be-University u/s 3 of UGC Act 1956, Government of India NAAC ACCREDITED Approved by MHRD / AICTE / PCI / BCI / COA / NCTE Nachauli, Jasana Road, Faridabad- 121002 (Haryana) Website: www.lingayasvidyapeeth.edu.in | Ph: 0129-2598200-05

To introduce project management concepts, enabling students to lead software development projects, manage teams, and meet deadlines.

COURSE OUTCOMES:

S.NO	DESCRIPTION	PO(112)	PSO(13)
		MAPPING	MAPPING
CO1	To learn the basic concepts of software engineering.	PO1, PO2,	PSO1
		PO5, PO9	
CO2	To know about the requirements and process to engineer the software.	PO3, PO4,	PSO3
		PO5, PO6	
CO3	To learn how to design a software & what are its strategies.	PO3, PO4,	PSO3
		PO5, PO6	
CO4	To aware about the coding, testing & maintenance of software	PO10,	PSO2,
		PO11	PSO3
CO5	To know about different metrics used for software evaluation.	PO1, PO2,	PSO1
		PO5, PO9	
COUR	SE OVERALL PO/PSO MAPPING: 2/2	I	1

COURSE OUTCOMES VS POs MAPPING (DETAILED; HIGH:3; MEDIUM:2; LOW:1):

S.NO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	1	1								2		2		
CO2	1	1	1								1		1	2	
CO3	2	1									1			1	1
CO4	1	1									1		1		1
CO5	1	1									1				1
CO1	1	1	1								2		2		

* For Entire Course, PO & PSO Mapping

POs & PSO REFERENCE:

PO 1	Apply the knowledge of mathematics, science, engineering and Application fundamentals, and an engineering and Application specialization to the solution of complex engineering problems.	PO7	Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.	PSO1	To equip the students with theoretical and implementation knowledgebase in all the latest areas of Computer Science & Engineering for a successful career in software industries, pursuing higher studies, or entrepreneurial establishments.
PO 2	Identify, formulate, research literature, and analyze	PO8	Apply ethical principles and commit to professional ethics	PSO2	To nurture the students with the critical thinking abilities

Deemed-to-be-University u/s 3 of UGC Act 1956, Government of India NAAC ACCREDITED Approved by MHRD / AICTE / PCI / BCI / COA / NCTE Nachauli, Jasana Road, Faridabad- 121002 (Haryana) Website: www.lingayasvidyapeeth.edu.in | Ph: 0129-2598200-05

	complex engineering problems reaching substantiated conclusions using first principles of		and responsibilities and norms of the engineering practice.		for better decision making by offering them a socially acceptable solutions to real life problems through
	mathematics, natural sciences, and engineering sciences.				computing paradigm.
PO 3	Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	PO9	Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.	PSO3	To nurture the students with the comprehensive analytical and design abilities by offering them techno-commercially feasible solutions of real business problems through computing.
PO 4	Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	PO1 0	Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.		
PO 5	Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.	PO1 1	Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.		
PO 6	Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.	PO1 2	Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.		

COs VS POs MAPPING JUSTIFICATION:

S.NO	PO/PSO MAPPED	LEVEL OF MAPPING	JUSTIFICATION
CO1	2/1	1	It aligns with Program Outcome Level 1 by establishing a solid foundation in
			software development principles and essential concepts, preparing students for further specialized learning.
CO2	3/3	2	It goes beyond foundational concepts to explore advanced methodologies and practices, enhancing students' readiness for complex software development

Deemed-to-be-University u/s 3 of UGC Act 1956, Government of India NAAC ACCREDITED Approved by MHRD / AICTE / PCI / BCI / COA / NCTE Nachauli, Jasana Road, Faridabad- 121002 (Haryana) Website: www.lingayasvidyapeeth.edu.in | Ph: 0129-2598200-05

			projects.
CO3	3/3	2	It delvs into advanced software engineering practices, methodologies, and project management, equipping students for challenging real-world software development scenarios.
CO4	2/3	1	It aligns with Program Outcome Level 1 by providing fundamental knowledge of software development principles, forming the basis for subsequent specialized learning in the program.
CO5	2/1	2	It offers advanced topics, methodologies, and practical experiences in software engineering, preparing students for complex projects and industry standards.

GAPS IN THE SYLLABUS - TO MEET INDUSTRY/PROFESSION REQUIREMENTS, POs & PSOs:

SNO	DESCRIPTION	PROPOSED
		ACTIONS
1	Lack of Agile and DevOps Integration: The syllabus may not adequately cover modern	Introduce
	software development practices such as Agile methodologies and DevOps.	modules on
		Agile
		development,
		continuous
		integration, and
		deployment,
		aligning with
		industry
		demand for
		iterative and
		automated
		workflows.
2	Limited Focus on Software Security: The course may not emphasize cybersecurity and	Incorporate
	secure coding practices, leaving a gap in preparing students for industry security	security-centric
	requirements.	modules
		addressing
		secure coding,
		threat modeling,
		and
		vulnerability
		assessments to
		ensure software
		resilience.
3	Insufficient Exposure to Industry Tools: Students might lack familiarity with industry-	Include hands-
	standard development tools and version control systems.	on training with
		tools like Git,
		JIRA, and
		industry-
		standard IDEs
		to enhance
		practical skills

Deemed-to-be-University u/s 3 of UGC Act 1956, Government of India NAAC ACCREDITED Approved by MHRD / AICTE / PCI / BCI / COA / NCTE Nachauli, Jasana Road, Faridabad- 121002 (Haryana) Website: www.lingayasvidyapeeth.edu.in | Ph: 0129-2598200-05

		and toolset
		proficiency.
4	Limited Collaboration and Soft Skills: The syllabus may not emphasize collaboration,	Introduce
	communication, and soft skills development, which are vital in real-world software	teamwork-
	engineering teams.	oriented
		projects,
		communication
		workshops, and
		presentation
		skills training to
		prepare students
		for
		interdisciplinary
		collaboration.
5	Inadequate Exposure to Emerging Technologies: The course might not cover emerging	Integrate
	technologies such as cloud computing, containerization, and microservices architecture.	modules on
		emerging
		technologies
		and trends to
		ensure students
		are familiar
		with industry-
		relevant
		advancements
		in software
		engineering.

PROPOSED ACTIONS: TOPICS BEYOND SYLLABUS/ASSIGNMENT/INDUSTRY VISIT/GUEST LECTURER/NPTEL ETC

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN:

1	Containerization and Orchestration
2	Microservices Architecture
3	Serverless Computing
4	Continuous Integration/Continuous Deployment (CI/CD)
5	Ethical Hacking and Penetration Testing
6	AI and Machine Learning Integration
7	User Experience (UX) Design

DELIVERY/INSTRUCTIONAL METHODOLOGIES:

CHALK & TALK	□ STUD. ASSIGNMENT	UWEB RESOURCES	□ NPTEL/OTHERS
LCD/SMART BOARDS	□ STUD. SEMINARS	□ ADD-ON COURSES	□ WEBNIARS

ASSESSMENT METHODOLOGIES-DIRECT

□ ASSIGNMENTS	□ STUD. SEMINARS	□ TESTS/MODEL EXAMS	□ UNIV. EXAMINATION
□ STUD. LAB PRACTICES	□ STUD. VIVA	☐ MINI/MAJOR PROJECTS	□ CERTIFICATIONS
□ ADD-ON COURSES	□ OTHERS		

Deemed-to-be-University u/s 3 of UGC Act 1956, Government of India NAAC ACCREDITED Approved by MHRD / AICTE / PCI / BCI / COA / NCTE Nachauli, Jasana Road, Faridabad- 121002 (Haryana) Website: www.lingayasvidyapeeth.edu.in | Ph: 0129-2598200-05

ASSESSMENT METHODOLOGIES-INDIRECT

□ ASSESSMENT OF COURSE OUTCOMES (BY FEEDBACK, ONCE)	□ STUDENT FEEDBACK ON FACULTY (TWICE)
□ ASSESSMENT OF MINI/MAJOR PROJECTS BY EXT. EXPERTS	□ OTHERS

INNOVATIONS IN TEACHING/LEARNING/EVALUATION PROCESSES:

1. Implement a project-centric approach where students work on real-world software development projects throughout the course. This hands-on experience mirrors industry practices and allows for practical application of concepts.

2. Utilize a flipped classroom model, where students review theory online and attend in-person or virtual sessions for coding exercises, discussions, and problem-solving. This encourages active learning and peer collaboration.

3. Incorporate peer code review sessions, where students assess and provide feedback on each other's code. This promotes code quality, collaboration, and learning from diverse coding styles.

4. Organize hackathons or coding competitions within the course, challenging students to apply their software engineering skills under time constraints. This fosters creativity and teamwork.

5. Replace traditional exams with continuous assessment methods that involve solving real-world software engineering challenges. Evaluate students' problem-solving abilities, code quality, and project management skills.

Prepared by Dr. Tapsi Nagpal Approved by A.Dean &HOD

Additionally, the details to be compiled separately by the Departmental Coordinator for the entire Department.