Name of School/ Department: School of Computer Sciences and information Technology Name of Program: B.Sc. CS

Name of School/ Department: School of computer sciences and information Technology Name of Program: B.Sc. CS \quad Branch/ Specialization: BCA

VISION:

Department of Mathematics committed to promote interdisciplinary Mathematical Science and research for attracting young talented students to contribute effectively in augmenting the national pool of human resource who are responsible citizens, sincere professional service and have deep respect for life.

MISSION:

1. To provide excellent knowledge of Mathematical sciences for suitable career and groom them for National recognition
2. To train the students for interdisciplinary applications and research.
3. To prepare our undergraduate and postgraduate students to understand the mathematical model to apply in other disciplinary approach.
4. To explore applications of mathematics and statistics and engage in collaborative research in an interdisciplinary environment.

PROGRAM OUTCOMES:

PO1: Apply the technique of mathematics and its approach in the solution of different Mathematical Problem.
PO2: Identify, formulate, and analyze complex problems reaching substantiated conclusions using mathematical model and its solution approach.
PO3: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of numerical data to provide valid conclusions.
PO4: Students develop critical thinking skills to identify, analyze and solve problems of their core areas using modern tools.
PO5: Students develop lifelong learning skills with interdisciplinary approach towards sustainable development.
PO6: Ability to communicate effectively the comprehended scientific data and knowledge, write effective reports, design documentation and make effective presentations.
PO7: Apply ethical, moral and social values in personal and professional life leading to highly cultured and civilized society.
PO8: Ability to work effectively as an individual or as a member or Team leader in diverse teams and in multidisciplinary environment.

PROGRAM SPECIFIC OUTCOMES:

PSO01: Students acquire knowledge of traditional and modern techniques of solving algebraic, transcendental equations, system of linear differential and integral equations, which have applications in many disciplines.
PSO02: The students attain sound knowledge in the areas of Mechanics, Thermal Physics, Waves and oscillations, optics, electromagnetism, modern physics, solid-state physics for pursing higher education and research.

COURSE DESCRIPTION:

1) Derive appropriate numerical methods to solve algebraic and transcendental equations
2) Develop appropriate numerical methods to approximate a function

COURSE OUTCOMES:

SNO	DESCRIPTION	$\begin{gathered} \hline \mathrm{PO} \\ (1 \ldots 8) \\ \text { MAPPIN } \end{gathered}$	$\text { PSO }(1,2)$ MAPPING
CO1	Understand the concept of error and approximation	PO1	PSO1
CO2	Students will learn about the solution of simultaneous linear equation	PO3	PSO1
CO3	Students will understand interpolation and curve fitting	PO5	PSO2
CO4	Students will learn numerical differentiation and integration	P07,	PSO2
C05	Define the concept of numerical solution of ODE and PDE	PO2	PSO2

COURSE OUTCOMES VS POs MAPPING (DETAILED; HIGH: 3; MEDIUM: 2; LOW: 1):

| SNO | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PSO1 | PSO2 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| C01 | 3 | 3 | 3 | 2 | 2 | 1 | 1 | 1 | 1 | - |
| CO2 | 2 | 3 | 2 | 1 | 1 | 1 | 2 | 2 | 1 | - |
| CO3 | 2 | 1 | 1 | | 1 | 1 | 1 | 1 | 1 | - |
| CO4 | 2 | 2 | 1 | 1 | 1 | 2 | 2 | 1 | - | - |
| CO5 | 2 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | |

SYLLABUS:

| UNIT | DETAILS | Contact Hours |
| :---: | :--- | :---: | :---: |
| $\mathbf{1}$ | ERRORS AND APPROXIMATIONS, \quad SOLUTION OF NON
 LINEAR EQUATIONS: Introduction to numbers and their accuracy; absolute, relative and
 percentage errors. Bisection method; Regular falsi method; secant method; fixed point
 iteration method; Newton- Raphson method; convergence criteria of methods | 08 |
| $\mathbf{2}$ | SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS: Gauss elimination
 method; Gauss-Jordan method; UV factorization method; Jacobi's iteration method;
 Gauss- Seidal iteration method | 08 |
| $\mathbf{3}$ | INTERPOLATION AND CURVE FITTING: Introduction to interpolation; Newton's
 forward and backward interpolation formulae; Gauss's forward and backward interpolation
 formulae; Stirling formula; Lagrange interpolation; Newton's divided difference formula;
 Principle of least squares; curve fitting | 08 |
| $\mathbf{4}$ | NUMERICAL DIFFERENTIATION AND INTEGRATION:Numerical
 differentiation formulae: differentiation by using forward interpolation formula; backward
 interpolation formula; Stirlling formula; Newton-Cotes formula for numerical integration: | |

| | Trapezoidal rule; Simpson's rules; Boole's rule and Weddle's rule; Romberg' method | |
| :---: | :--- | :--- | :--- | :--- |
| $\mathbf{5}$ | NUMERICAL SOLUTION OF ORDINARY AND PARTIAL DIFFERENTIAL

 EQUATION: Taylor series method; Euler method; Euler modified method; Runge kutta
 solution of differential equation | 08 |

COURSE COMPLETION PLAN

Total Class room sessions	$\mathbf{4 0}$
Total Quizzes	$\mathbf{3}$
Total Test	$\mathbf{4}$
Total Assignment	$\mathbf{2}$

One Session = 50 Minutes

EVALUATION \& GRADING

- Students will be evaluated based on the following stages.
- Internal Assessment $=40 \%$
- End Semester Examination $=60 \%$

INTERNAL ASSESSMENT: Internal Assessment shall be done based on the following:

Description		\% of Weightage out of 40 marks
No.		

$\mathbf{2}$	Assignments (Problems/Presentations)	15%
$\mathbf{3}$	Mid Sessional tests	25%
$\mathbf{4}$	Attendance and conduct in the class	60%

DETAILED SESSION PLAN

Lecture session/ Number	Topics to be covered	Teacher Centric Approach	Learner Centric Approach	T1/R1	Relevance with POs and PSOs
1	Numbers and accuracy	TC1, TC2	LC1, LC3.	T1/R1	PO1
2	Absolute error	$\begin{aligned} & \mathrm{TC} 1 \\ & \mathrm{TC} 1, \mathrm{TC} 2 \end{aligned}$	LC1, LC3.	T1/R1T1/R1	PO4
3	Relative error		LC1, LC3.		PO1,PSO1
4	Percentage error	$\begin{aligned} & \mathrm{TC} 1 \\ & \mathrm{TC} 1, \mathrm{TC} 2 \end{aligned}$	LC1, LC3.	T1/R1T1/R1	PO4,PSO2
5	Bisection method		LC1, LC3.		PO2, PSO2
6	Regular falsi method	TC1, TC2	LC1, LC3.	T1/R1	PO4
7	Secant method	TC1	LC1, LC3.	T1/R1	PO1,PSO1
8	Fixed point iteration	TC1, TC2	LC1, LC3.	T1/R1	PO2,PSO2
9	Newton Raphson method	TC1	LC1, LC3.	T1/R1/W1	PO4,PSO1
10	Convergence criteria	TC1, TC2	LC1, LC3.	T1/R1	PO1,PSO1
11	Gauss elimination method	TC1	LC1, LC3.	T1/R1	PO1

12	Gauss Jordan method	TC1	LC1, LC3.	T1/R1	PO4,PSO2
13	UV factorization method	TC1	LC1, LC3.	T1/R1	PO3
14	Jacobi iteration method	TC1	LC1, LC3.	T2/R2	PO2,PSO2
15	Gauss seidal iteration method	TC1, TC2	LC1, LC3.	T1/R1	PO2,PSO1
16	Interpolation	TC1	LC1, LC3.	T1/R1	PO1,PSO1
17	Newton forward interpolation	TC1	LC1, LC3.	T2/R1/W2	PO3,PSO2
18	Newton backward interpolation	TC1	LC1, LC3.	T1/R1	PO1
19	Gauss forward interpolation	TC1	LC1, LC3.	T1/R1	PO4,PSO1
20	Gauss backward interpolation	TC1	LC1, LC3.	T1/R1	PO3
21	Stirling formula	TC1	LC1, LC3.	T2/R2	PO3,PSO1
22	Lagrange interpolation	TC1	LC1, LC3.	T1/R1	PO2
23	Newton divided difference	TC1, TC2	LC1, LC3.	T1/R1	PO4,PSO1
24	Principle of least square	TC1	LC1, LC3.	T1/R1	PO2,PSO1
25	Curve fitting	TC1	LC1, LC3.	T1/R1/W1	PO3,PSO1
26	Numerical differentiation	TC1, TC2	LC1, LC3.	T1/R2/W2	PO1
27	Differentiation by forward interpolation	TC1	LC1, LC3.	T1/R1	PO4,PSO3
28	Differentiation by backward	TC1, TC2	LC1, LC3.	T1/R1	PO1,PSO1

29	Newton cotes formula	TC1	LC1, LC3.	T2/R1/W3	PO2
30	Numerical integration	TC1	LC1, LC3.	T1/R1	PO1
31	Trapezoidal rule	TC1	LC1, LC3.	T1/R1	PO4,PSO2
32	Simpson rule	TC1	LC1, LC3.	T1/R1	PO1
33	Boole's rule	TC1	LC1, LC3.	T3/R1/W2	PO4,PSO1
34	Weddle rule	TC1	LC1, LC3.	T1/R1	PO3,PSO1
35	Romberg method	TC1, TC2	LC1, LC3.	T1/R1	PO2
36	Taylor series method	TC1	LC1, LC3.	T1/R1	PO4,PSO1
37	Euler method	TC1, TC2	LC1, LC3.	T1/R1	PO3
38	RK method	TC1	LC1, LC3.	T1/R1	PO4,PSO1
39	Modified Euler method		LC1, LC3.	T1/R1/W3	PO1
40	P-C methods	TC1, TC2	LC1, LC3.	T1/R1	PO2,PSO2

REFERENCES:

Text Book	T1 \quad Grewal, B. S., "Numerical methods in Engineering and Science				
	Reference Book			R1	1) M.K. Jain, S.R.K. Iyengar and R.K. Jain, Numerical Methods for Scientific and Engineering Computation, 6th Ed., New age International Publisher, India, 2007
	R2	Sastry, S.S.," " Introductory Methods of Numerical Analysis			

	R3	1) Curtis F "Applied Numerical Analysis".
Web based materials	W1	1) Brian Bradie, A Friendly Introduction to Numerical Analysis, Pearson Education, India, 2007.

Faculty: Mrs. Priyavada
HOD: Prof Ritu Arun Sindhu

