

Deemed-to-be-University u/s 3 of UGC Act 1956, Government of India NAAC ACCREDITED Approved by MHRD / AICTE / PCI / BCI / COA / NCTE Nachauli, Jasana Road, Faridabad- 121002 (Haryana) Website: www.lingayasvidyapeeth.edu.in | Ph: 0129-2598200-05

COURSE PLAN & COURSE DATA SHEET

PROGRAM: BCA		DEGREE: BCA			
COURSE: Data Structure Using C		SEMESTER: 2 nd	CREDITS: 3		
COURSE CODE: BCA-102	REGULATION:	COURSE TYPE: CORE			
COURSE AREA/DOMAIN: Computer Applica	ations	CONTACT HOURS: 42			
CORRESPONDING LAB COURSE CODE (IF	F ANY): BCA-152	LAB COURSE NAME (IF	ANY): Data Structure Using C LAB		

PROGRAM EDUCATIONAL OBJECTIVES:

Program Educational Objectives for a course on data structures using C typically focus on the skills, knowledge, and attributes that students are expected to acquire after completing the program. Here are some potential PEOs for a Data Structures course using C:

- 1. Problem Solving Skills: Graduates will be able to analyze and solve complex problems using data structures and algorithms in the C programming language.
- 2. Algorithmic thinking: Graduates will develop proficiency in designing and implementing efficient algorithms to address a variety of computational problems.
- 3. Programming Proficiency in C: Graduates will demonstrate a strong command of the C programming language, specifically in the context of implementing and manipulating data structures.
- 4. Data Abstraction and Modularity: Graduates will be able to design and implement modular and reusable code using abstract data types, encapsulation, and information hiding.
- 5. Efficient Memory Management: Graduates will understand and apply efficient memory management techniques to optimize data storage and retrieval in various data structures.

SYLLABUS:

UNIT	DETAILS	HOURS
Ι	INTRODUCTION TO DATA STRUCTURES: Definition of data structure, data structure operations. Algorithms: Complexity, Time Space tradeoff, Complexity of Algorithms, Asymptotic Notations for Complexity of Algorithms, Variables.	7
Π	ARRAYS AND LINKED LISTS: Introduction, Linear arrays, Representation of linear arrays in memory, Address calculation of using row and column major ordering, Traversing linear arrays, Inserting and Deleting, Multidimensional arrays, Linked Lists, Representation of Linear Lists in memory, Traversing a Linked List, Searching a linked List, Insertion into a linked list, Deletion from linked list, Circular linked lists, Doubly linked lists, Header linked lists, Memory allocation: Garbage collection, overflow and underflow.	8
Ш	STACK AND QUEUES: Stacks: Definition, Array representation of stacks, Linked representation of stacks, Polish notation, Evaluation of a Postfix Expression, Transforming Infix Expressions into Postfix Expressions, Queues: Definition, Array representation of Queues, Linked representation of Queues, Circular queues, Priority Queue, Double Ended Queue.	9
IV	TREES AND GRAPHS: Definition of trees and Binary trees; Properties of Binary trees and Implementation; Binary Traversal pre-order; post order; in- order traversal; Binary Search Trees, AVL trees, Balanced trees. Definition of Undirected and Directed Graphs; The Array based implementation of graphs; Adjacency matrix; path matrix implementation; The Linked List representation of graphs; Graph Traversal – Breadth first Traversal; Depth first Traversal.	11
V	SORTING AND SEARCHING ALGORITHMS: Introduction; Sorting by exchange; selection; insertions; bubble sort; Merge sort; Quick sort, Heap sort; Searching Algorithms: Straight Sequential Search; Binary Search (recursive & non-recursive Algorithms).	7

Deemed-to-be-University u/s 3 of UGC Act 1956, Government of India NAAC ACCREDITED Approved by MHRD / AICTE / PCI / BCI / COA / NCTE Nachauli, Jasana Road, Faridabad- 121002 (Haryana) Website: www.lingayasvidyapeeth.edu.in | Ph: 0129-2598200-05

TOTAL HOURS 42

Teacher Centric Appro TC1: Chalk and Talk, Blended learning	oach TC2: PPT,	TC3: Video Le	ectures	TC4:
Learner Centric Appro	oach:			
LC1: Assignment.	LC2: Mini project.	LC3: Quiz/Class test.	LC 4: Seminar on rec	ent trends.
LC5: Group Task.	LC6: Others			

DETAILED SESSION PLAN

Lecture session/ Number	Topics to be covered	CO addressed	Teacher Centric Approach	Learner Centric Approach	References	Relevance with POs and PSOs
1	Definition of data		TC1, TC2	LC1,LC3	T1/T2/R1	1
	Structures and abstract					
	data types; linear vs.					
	non-linear data					
2	Drimitivo vo non		TC1 TC2		T1/T2/T2/D1	1
2	primitive data		101,102	LCI,LC5	11/12/13/KI	1
	structure; static and					
	dynamic					
2	Arroya 1.2		TC1 TC2		T1/T2/D1/D2	2
5	dimensional arrays,		101,102	Lei,Les	11/12/11/12	2
	insertion & deletion in					
	and real life					
	applications.					
4			TC1,TC2	LC1,LC3,LC4	T1/T2/T3/R1/R2	2
	Time complexity; Big					
5	Oh notation Best case, worst case		ТС1 ТС2		T1/T2/T3/R1/R2	2
0	average case; factors		101,102		11/12/13/11/12	2
	depends on running					
	time					
6	Introduction to		TC1,TC2	LC1,LC3	T1/T2/R1/R2/R3	1
	recursion. ABQ1					

Deemed-to-be-University u/s 3 of UGC Act 1956, Government of India NAAC ACCREDITED Approved by MHRD / AICTE / PCI / BCI / COA / NCTE Nachauli, Jasana Road, Faridabad- 121002 (Haryana) Website: www.lingayasvidyapeeth.edu.in | Ph: 0129-2598200-05

7	QUIZ-1	TC1,TC2	LC1,LC3,LC4	T1/T2/T3/R1/R2	
8	Stacks: definition, array based				2
9	Applications of Stack-	TC1,TC2	LC1,LC3,LC4	T1/T2/T3/R1/R2	2
10	Infix, postfix, prefix Coversions	TC1,TC2	LC1,LC3	T1/T2/T3/R1/R2	2
11	Definition of queues,	TC1,TC2	LC1,LC3,LC2	T1/T2/T3/R1/R3	1
12	Array based	TC1,TC2	LC1,LC3,LC2	T1/T2/R1/R3	2
13	ASSESSMENT-1				-
14	LINKED LISTS	TC1,TC2	LC1,LC3	T1/T2/R1/R3	1
15	Implementation of singly linked list	TC1,TC2	LC1,LC3	T1/T2/T3/R1/R2	2
16	Linked list	TC1,TC2	LC1,LC3	T1/T2/T3/R1/R3	2
17	Implementation of circular linked list	TC1,TC,2	LC1,LC3	T1/T2/T3/R1/R3	2
18	Implementation of doubly linked list.	TC1,TC2	LC1,LC3	T1/T2/R1/R2	2
19	QUIZ-2	TC1,TC2	LC1,LC3	T1/T2/R1/R2	-
20	TREES AND GRAPHS: Definition				1
21	Implementation of binary trees.	TC1, TC2	LC1,LC3	T1/T2/T3/R1/R3	2
22	Binary traversal pre- order, post-order, in-	TC1,TC2	LC1,LC3	T1/T2/T3/R1/R3	2
23	Introduction of binary search trees and	TC1,TC2	LC1,LC3, LC4	T1/T2/T3/R1/R2	2
24	Insertion & deletion operation of BST.	TC1,TC2	LC1,LC3	T1/T2/T3/R1/R2	2
25	Definition of undirected and directed	TC1,TC2	LC1,LC3	T1/T2/T3/R1/R2	2
24	Adjacency matrix; path matrix implementation	TC1,TC2	LC1,LC3	T1/T2/R1/R2	2
25	Linked list representation of				2
26	Graph traversal: breadth first traversal,	TC1,TC2	LC1,LC3	T1/T2/R1/R3	1
27	Implementations and applications.	TC1,TC2	LC1,LC3,LC5	T1/T2/R1/R3	1
28	ASSESSMENT-2	TC1,TC2	LC1,LC3,LC5	T1/T2/R1/R2	
29	Introduction to sorting and searching of	TC1,TC2	LC1,LC3,LC5	T1/T2/R1/R2	1
30	Selection, insertions, bubble sort	TC1,TC2	LC1,LC3,LC5	T1/T2/R1/R2	2

Head Office: P-2, Kh. No. 30, Saiduljaab, Near Saket Metro Station, M.B. Road, New Delhi-110030 | Ph.: 011-40719000 Admmn. Office Vijaywada: 1st Floor, Sai Odyssey, Opp. Executive Club, Gurunanak Nagar Road, NH-5, Vijaywada-520008 www.lingayasgroup.org *"Par Excellence With Human Touch"*

Deemed-to-be-University u/s 3 of UGC Act 1956, Government of India NAAC ACCREDITED Approved by MHRD / AICTE / PCI / BCI / COA / NCTE Nachauli, Jasana Road, Faridabad- 121002 (Haryana) Website: www.lingayasvidyapeeth.edu.in | Ph: 0129-2598200-05

31	Merge sort, merging of	TC1,TC2	LC1,LC3	T1/T2/R2/R3	2
	sorted arrays and				
32	Heap sort, searching	TC1,TC2	LC1,LC3	T2/T3/R1/R2	2
	algorithms: straight				
33	Binary search			T1/T2/T3/R1/R2	2
	(recursive &				
34	Revision Class				
35	Mathematical solutions	TC1, TC2	LC1,LC3	T1/T2/T3/R1/R3	2
	for sorting algorithms				
36	Merging techniques	TC1,TC2	LC1,LC3	T1/T2/T3/R1/R3	2
37	Graph implementation	TC1,TC2	LC1,LC3, LC4	T1/T2/T3/R1/R2	2
	and implications				
38	Significance of linked	TC1,TC2	LC1,LC3	T1/T2/T3/R1/R2	2
	lists				
39	Difference between	TC1,TC2	LC1,LC3	T1/T2/T3/R1/R2	2
	various linked lists				
40	Current trends and data	TC1,TC2	LC1,LC3	T1/T2/R1/R2	2
	structure implication				
41	Quiz-3				
42	Final Assessment				

TEXT/REFERENCE BOOKS:

T/R	BOOK TITLE/AUTHORS/PUBLICATION
1	I angsam Augentem M I and Tenenhaum A M. Data Structures using C & amp: C++ Prentice Hall of India 2009
	Eurgsun, Augentein W.s. and Tenenouum A. W., Dua Structures using C coump, C + 1, Tentee Han of India, 2007.
2	P. S. Solariya Data Structure and Algorithm Khanna Publications
2	K. S.Salariya, Data Structure and Algorithm, Khanna Fuoreations.
2	Also A. V. Hannelli, E. S. Hilling, T. D. D. & Okastan and Also Market Okasta Edition, Adding West, A. L.
3	Ano A. V., Hopcroft J. E. and Uliman T. D., —Data Structures and Algorithms ^{II} , Original Edition, Addison-wesley, Low
	Priced Edition 1983
	Thee Lation, 1705.

WEB SOURCE REFERENCES (W):

1	Geeksforgeeks
2	www.coursera.com
3	www.simplilearn.com

COURSE PRE-REQUISITES:

C.CODE	COURSE NAME	DESCRIPTION	SEM
-	Basic knowledge of computers	-	-

Deemed-to-be-University u/s 3 of UGC Act 1956, Government of India NAAC ACCREDITED Approved by MHRD / AICTE / PCI / BCI / COA / NCTE Nachauli, Jasana Road, Faridabad- 121002 (Haryana) Website: www.lingayasvidyapeeth.edu.in | Ph: 0129-2598200-05

COURSE OBJECTIVES:

- 1. **Understand Basic Data Structures:** Develop a clear understanding of fundamental data structures such as arrays, linked lists, stacks, and queues. Learn the principles behind their implementation and comprehend the advantages and limitations of each structure.
- 2. **Implement and Manipulate Trees and Graphs:** Gain proficiency in implementing and manipulating tree structures (e.g., binary trees, AVL trees) and graph structures. Understand the algorithms for tree traversal, graph traversal, and basic operations on these structures.
- 3. Apply Sorting and Searching Techniques: Learn and implement various sorting algorithms (e.g., bubble sort, quicksort, merge sort) and searching algorithms (e.g., linear search, binary search). Understand the time and space complexity of these algorithms and their application in different scenarios.
- 4. **Develop Dynamic Data Structures:** Explore dynamic data structures like linked lists and dynamic arrays. Understand memory management techniques, such as pointers and dynamic memory allocation, and their role in creating flexible and efficient data structures.
- 5. **Analyze Algorithm Complexity:** Learn to analyze the time and space complexity of algorithms. Understand Big O notation and apply it to evaluate the efficiency of algorithms and data structures. Gain insights into choosing the most appropriate data structure based on the requirements of a particular problem.

S.NO	DESCRIPTION	PO(112)	PSO(13)					
		MAPPING	MAPPING					
CO1	Understand the concept of data structures, algorithms, time and space	PO1,PO2	PSO1					
	complexity.							
CO2	Understand basic data structures such as arrays and linked lists.	PO1,PO2,PO3	PSO1,PSO2					
CO3	Describe the data structures such as stacks and queues.	PO1,PO2,PO3,PO4,PO5	PSO1,PSO2					
CO4	Solve problems involving graphs and trees	PO1,PO2,PO3	PSO1,PSO2					
CO5	Apply Algorithm for solving problems like sorting, searching,	PO1,PO2,PO3,PO4,PO5	PSO1,PSO2					
	insertion and deletion of data.							
COURS	COURSE OVERALL PO/PSO MAPPING:							

COURSE OUTCOMES:

COURSE OUTCOMES VS POs MAPPING (DETAILED; HIGH:3; MEDIUM:2; LOW:1):

S.NO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	1	-	-	-	-	-	-	1	-	-	-	2	-	1
CO2	2	1	1	2	-	-	1	1	-	-	1	-	2	1	-
CO3	2	2	1	1	1	-	-	2	-	1	-	-	2	2	-
CO4	2	1	1	-	-	1	1	1	-	-	1	1	2	2	1
CO5	2	1	1	1	1	-	-	-	1	1	1	-	2	2	-

* For Entire Course, PO & PSO Mapping

POs & PSO REFERENCE:

a,						
	PO1	Engineering	PO7	Environment &	PSO1	To equip the students with theoretical and implementation
		Knowledge		Sustainability		knowledgebase in all the latest areas of Computer Science;
						Engineering for a successful career in software industries,
						pursuing higher studies, or entrepreneurial establishments.
	PO2	Problem	PO8	Ethics	PSO2	To nurture the students with the critical thinking abilities for
		Analysis				better decision making by offering them a socially acceptable
						solutions to real life problems through computing paradigm.

Head Office: P-2, Kh. No. 30, Saiduljaab, Near Saket Metro Station, M.B. Road, New Delhi-110030 | Ph.: 011-40719000 Admmn. Office Vijaywada: 1st Floor, Sai Odyssey, Opp. Executive Club, Gurunanak Nagar Road, NH-5, Vijaywada-520008 www.lingayasgroup.org "Par Excellence With Human Touch"

Deemed-to-be-University u/s 3 of UGC Act 1956, Government of India NAAC ACCREDITED Approved by MHRD / AICTE / PCI / BCI / COA / NCTE Nachauli, Jasana Road, Faridabad- 121002 (Haryana) Website: www.lingayasvidyapeeth.edu.in | Ph: 0129-2598200-05

PO3	Design &	PO9	Individual & Team	PSO3	To nurture the students with the comprehensive analytical and
	Development		Work		design abilities by offering them techno-commercially feasible
					solutions of real business problems through computing.
PO4	Investigations	PO10	Communication		
	-		Skills		
PO5	Modern Tools	PO11	Project Mgt. &		
			Finance		
PO6	Engineer &	PO12	Life Long		
	Society		Learning		

COs VS POs MAPPING JUSTIFICATION:

S.NO	PO/PSO MAPPED	LEVEL OF MAPPING	JUSTIFICATION
Cxxx.1			
Cxxx.2			
Cxxx.3			
Cxxx.4			
Cxxx.5			
Cxxx*			

GAPS IN THE SYLLABUS - TO MEET INDUSTRY/PROFESSION REQUIREMENTS, POS & PSOs:

SNO	DESCRIPTION	PROPOSED ACTIONS
1	Advanced Sorting Algorithms: Introduce advanced sorting algorithms like merge sort, quicksort, and radix sort, and discuss their time and space complexities.	Need to be
	rudix sort, and discuss mon time and space complexities.	extra
		session
2	Hashing Techniques: Explore various hashing techniques such as open addressing, closed addressing,	Need to be
	and perfect hashing. Discuss collision resolution strategies and hash function design.	Covered in
		extra
		session
3	Advanced Tree Structures: Cover advanced tree structures like AVL trees, Red-Black trees, B-trees, and	Need to be
	Trie structures. Discuss their properties, applications, and advantages.	Covered in
		extra
		session
4	Graph Algorithms: Delve deeper into graph algorithms, including depth-first search (DFS), breadth-first	Need to be
	search (BFS), Dijkstra's algorithm for shortest paths, and Kruskal's or Prim's algorithm for minimum	Covered in
	spanning trees.	extra
		session
5	Dynamic Programming: Introduce the concept of dynamic programming and discuss how it can be	Need to be
	applied to solve optimization problems efficiently. Explore examples such as the knapsack problem and	Covered in
	longest common subsequence.	extra
		session

PROPOSED ACTIONS: TOPICS BEYOND SYLLABUS/ASSIGNMENT/INDUSTRY VISIT/GUEST LECTURER/NPTEL ETC

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN:

Head Office: P-2, Kh. No. 30, Saiduljaab, Near Saket Metro Station, M.B. Road, New Delhi-110030 | Ph.: 011-40719000 Admmn. Office Vijaywada: 1st Floor, Sai Odyssey, Opp. Executive Club, Gurunanak Nagar Road, NH-5, Vijaywada-520008 www.lingayasgroup.org *"Par Excellence With Human Touch"*

Deemed-to-be-University u/s 3 of UGC Act 1956, Government of India NAAC ACCREDITED Approved by MHRD / AICTE / PCI / BCI / COA / NCTE Nachauli, Jasana Road, Faridabad- 121002 (Haryana) Website: www.lingayasvidyapeeth.edu.in | Ph: 0129-2598200-05

1	Introduce advanced sorting algorithms like merge sort, quicksort, and radix sort, and discuss their time and
	space complexities.
2	Explore various hashing techniques such as open addressing, closed addressing, and perfect hashing. Discuss
	collision resolution strategies and hash function design.
3	Cover advanced tree structures like AVL trees, Red-Black trees, B-trees, and Trie structures. Discuss their
	properties, applications, and advantages.
4	Delve deeper into graph algorithms, including depth-first search (DFS), breadth-first search (BFS), Dijkstra's
	algorithm for shortest paths, and Kruskal's or Prim's algorithm for minimum spanning trees.
5	Introduce the concept of dynamic programming and discuss how it can be applied to solve optimization
	problems efficiently. Explore examples such as the knapsack problem and longest common subsequence.

DELIVERY/INSTRUCTIONAL METHODOLOGIES:

□ CHALK & TALK	□ STUD. ASSIGNMENT	□ WEB RESOURCES	□ NPTEL/OTHERS
LCD/SMART BOARDS	□ STUD. SEMINARS	□ ADD-ON COURSES	□ WEBNIARS

ASSESSMENT METHODOLOGIES-DIRECT

□ ASSIGNMENTS	□ STUD. SEMINARS	□ TESTS/MODEL EXAMS	UNIV. EXAMINATION
□ STUD. LAB PRACTICES	□ STUD. VIVA	☐ MINI/MAJOR PROJECTS	□ CERTIFICATIONS
□ ADD-ON COURSES	□ OTHERS		

ASSESSMENT METHODOLOGIES-INDIRECT

□ ASSESSMENT OF COURSE OUTCOMES (BY FEEDBACK, ONCE)	□ STUDENT FEEDBACK ON FACULTY (TWICE)
□ ASSESSMENT OF MINI/MAJOR PROJECTS BY EXT. EXPERTS	□ OTHERS

INNOVATIONS IN TEACHING/LEARNING/EVALUATION PROCESSES:

- 1. **Technology Integration:** Embrace and integrate technology tools in the classroom to enhance the learning experience. This can include interactive whiteboards, educational apps, virtual reality, and online collaboration platforms. Utilizing technology allows for more dynamic and interactive lessons, catering to diverse learning styles.
- 2. **Personalized Learning Paths:** Implement personalized learning approaches that cater to individual student needs and pace of learning. Adaptive learning platforms and data analytics can help tailor educational content, assignments, and assessments based on the strengths and weaknesses of each student, promoting a more customized learning experience.
- 3. Active Learning Strategies: Move away from traditional lecture-based approaches and incorporate active learning strategies. This involves engaging students in hands-on activities, group discussions, problem-solving exercises, and real-world projects. Active learning fosters critical thinking, collaboration, and practical application of knowledge.
- 4. **Blended Learning Models:** Adopt blended learning models that combine face-to-face instruction with online resources. This allows for flexibility in learning, enabling students to access materials at their own pace outside the classroom. Flipped classrooms, where students learn new concepts online and engage in discussions and activities during class, are an example of a blended learning approach.
- 5. Assessment Innovation: Rethink assessment methods to go beyond traditional exams and quizzes. Explore alternative forms of assessment, such as project-based assessments, portfolios, presentations, and peer assessments. Additionally, incorporate formative assessments and feedback throughout the learning process to help students track their progress and make improvements.

Prepared by Ms. Tanya Chauhan Approved by (HOD)